May 28: Galois's Criterion
Plan
Today \& Wednesday: Ceabiss criteon
Friday: Discerssion
No refleatin
HWIO:

Galois's criterion:
Let K char O field
Let $f \in K[x]$
Let L he the spiting field
f solvable by \Longleftrightarrow Gall $L K$) radicals solvable.
Recall that a group C_{l} is solvable if

$$
\exists \quad 0=a_{0} \Delta C_{1} \Delta c_{12}-\Delta G_{s}=C_{1}
$$

sit. Gi/Gi-1 abelian.
Fact 1: Sn not solvable $n \geqslant 5$
Fact 2 I $f \in \theta[x]$ of clegriee 5 st. Gall L/A) $\cong S_{5}$ whee L spiting fried of Q
Cor Not all quulids are soluble!

For any frize group G can embed $C_{1} \subset S_{n}$ for same n
Use fat: $\exists Q \subset L$ with $\operatorname{Ca}(L \cup \theta)=S_{n}$

$$
a \subset S_{n} \longmapsto Q_{\substack{ \\\text { Doit know } \\ \text { nomad }}}^{\text {Galois gp }^{G} c, L}
$$

More gereally, $\exists f$ of clogre n
with Gal $4(\theta) \cong S_{n}$
Ques:
(I) What is Calling grant for a random f? Guess: S_{n}
(2) For any $\&$ finite grip, does $\exists f \in \mathbb{Q}[x]$ sit $\operatorname{Cav}(U(Q) \equiv C$ Open!

Galois's criterion:
Let K char O field
Let $f \in K[x]$
Let L he the spiting field
$f \begin{gathered}\text { solvable by } \\ \text { radicals }\end{gathered} \Longleftrightarrow G$ Call $L K$)
\qquad
We will prove \Longrightarrow
(This direction gives as the) cor that If $\in \mathbb{Q}[x]$ not shade
Other cincture \Longleftarrow : Option for
Attempt: (Whore does this go wang? Let $f \in K[x]$ be situate by radicals. This meas that $\exists K \subset \underset{\uparrow}{L} \subset E$ radical ext
of \nless

Recall that $K \subset E$ is radical if $\exists K=E_{0} \subset E_{1} \subset \cdots \subset E_{S}=E$ shh $E_{i}=E_{i-1}\left(\alpha_{i}\right)$ where $a_{i}=\alpha_{i}^{n_{i}} \in E_{i-1} \leadsto \alpha_{i}=\sqrt{n_{i}}$ $E_{x:} Q \subset Q(\sqrt{2}) \subset Q(\sqrt{2}, \sqrt{7})$ Is $\operatorname{Cal}(E / K)$ solvable? - CCallE/E) CCal(E/E) CCIal(ENK) Fund hm \Rightarrow (Not quite night!) $\operatorname{Caal}\left(E / E_{i}\right) / C a\left(E / E_{i+1}\right)$ becank $\equiv \operatorname{Cral}\left(E_{i+1} / E_{i}\right)$ notura rinaol $\Rightarrow \operatorname{Gal}(E \mid K l$ solvable! But $\operatorname{Cal}(L / K)=\operatorname{Cal}(E K) / \operatorname{Cal}(E / L)$

Example
$K \subset K(\underbrace{\alpha}_{\frac{1}{a_{1}}}$ for $a \in K$
not nee. normal
$K \subset K\left(\eta_{a}\right) \Leftrightarrow K$ contain g a pin. a th rot t of unity ρ
Reason: If α is a not of $x^{n}-a \in K[x]$, the the other roots are

$$
\alpha, \rho \alpha, \rho^{2} \alpha, \ldots, \rho^{n-1} \alpha
$$

To fix the part, we ode h $n^{\text {th }}$ nobs of unity.

Lemma 1 K char o field Let ρ be a prim. $n^{\text {th }}$ rout if unity in some fidel ext.
Then $K \subset K(\rho)$ Galois ard $\operatorname{Gal}(K(\rho) / K)$ is obelian.
Could be case Hoot $g \in K$. in wis case $\operatorname{Cal}(k(\rho) / k)=\{1\}$
PF: For $\left.\sigma \in \operatorname{Cal}\left(M_{(}\right) / K\right)$, we know $\sigma(\rho)$ determines σ and $\sigma(\rho)=\rho^{i}$ for some i Given $\tau \in \operatorname{cal}(k l \rho) k)$, the, $\tau(\rho)=\rho^{j}$ for save j $(\tau \circ \sigma)(\rho)=\rho^{i \cdot j}=(\sigma \circ t)(\rho)$

$$
\Longrightarrow \tau \circ \sigma=\sigma 0 \bar{c}
$$

Lemma 2 K char o field

- Assam K has a prim nth root of unity $\rho \in K$.
- Suppose α is a root of

$$
x^{n}-a \in K[x]
$$

Then $K \subset K(\alpha)$ Cassis \& Cal (K(2)/k) cloclion.
PF: If α is a roit, then so are $\alpha, \rho \alpha, \rho^{2} \alpha, \ldots, \rho^{n-1} \alpha$ \Rightarrow Kck(a) adios
Any $\sigma \in \operatorname{Car}(k(\alpha) / k)$ is deterinel by $\sigma(\alpha)=\rho^{i} \alpha$ for $\sin \alpha ~ i$.
Any て, $\tau(\alpha)=\rho^{j} \alpha$

$$
(\tau \circ \sigma)(\alpha)=(\sigma \circ \tau)(\alpha)
$$

To $\sigma=\sigma \circ \tau$

